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Molecular motorssboth rotary and linear onessare com-
monplace in biological systems,1 but the idea of constructing
molecular-level machines is a recent one.2 Artificial molecular
machines can be defined3 as assemblies of discrete numbers of
components designed to perform mechanical-like movements
(outputs) when subjected to external stimuli (inputs).4,5

Under suitable chemical, photochemical, or electrochemical
stimulation, mechanically interlocked molecular compounds6 like
rotaxanes and catenanes can undergo co-conformational7 changes
reminiscent of motions associated with some macroscopic ma-
chines. In particular, the dynamic behavior of appropriately
desymmetrized [2]catenanes makes them ideal candidates for
investigating switching phenomena at a molecular level.8 The co-
conformational changes usually occur between two different, well-
defined translational isomers9 and are accompanied by the
switching “on” or “off ” of some observable property, such as
electronic absorption, luminescence, NMR signals, and electro-
chemical potentials. Control of at least one of these outputs opens

up possibilities to be able to process information at the molecular
level.10 Here, we report a rare instance of a desymmetrized [2]-
catenane in which (1) reversible switching can be induced between
two different species by chemical inputs and where (2) the outputs
are optical and electrochemical.

The syntheses of the [2]catenanes14+ and24+ (Figure 1) have
been reported recently.11 Whereas in14+, the bis-p-phenylene-
[34]crown-10 (BPP34C10) macrocycle, with its twoπ-electron-
rich hydroquinone rings, is interlocked with a symmetrical
cyclophane containing twoπ-electron-deficient diazapyrenium
(DAP2+) units, in24+ the symmetrical cyclophane is substituted
by a dissymmetrical one in which one of the DAP2+ units is
replaced by aπ-electron-deficient bipyridinium (BPY2+) unit.
Since the DAP2+ unit interacts more strongly than the BPY2+

one with theπ-electron-rich 1,5-dinaphtho[38]crown-10,12 it can
be expected that the preferred translational isomer of the [2]-
catenane24+ is the one with the DAP2+ unit located inside the
BPP34C10 macrocycle (isomer2A4+). This prediction is con-
firmed by the ratio 96:4 for2A4+:2B4+ obtained from1H NMR
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Figure 1. The [2]catenane14+ and the translational isomers (2A4+ and
2B4+) of the [2]catenane24+.
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spectroscopy in (CD3)2CO at -80 °C.11 Previously, we have
found12,13 that the DAP2+ unit forms very stable adducts with
aliphatic amines, whereas the BPY2+ unit does not show this kind
of interaction.12 We thought that this contrasting behavior of
DAP2+ and BPY2+ units toward the aliphatic amines might be
exploited to switch (Figure 1) the [2]catenane24+ between its
two 2A4+ and2B4+ translational isomers.14

On addition of 5.0× 10-3 M Me(CH2)5NH2 to a 5.0× 10-4

M MeCN solution of2A4+, the absorption bands, characteristic
of the DAP2+ unit, are substantially depressed, and two broad
and intense bands appear in the visible region (λmax ) 460 nm,ε
) 17000 M-1 cm-1; λmax ) 610 nm,ε ) 8400 M-1 cm-1).15

These changes are similar to those observed on addition of Me-
(CH2)5NH2 to dibenzyldiazapyrenium,13 its pseudorotaxanes,10b,12,13

and also the [2]catenane14+. They indicate that an adduct is
formed between the DAP2+ unit of 24+ and Me(CH2)5NH2. The
emission band around 700 nm, characteristic of the amine adduct
of the DAP2+ unit,10b,13is not observed in the case of14+ and24+

since it is quenched by low-lying charge-transfer excited states.
The differential pulse voltammogram15 of 24+ shows (Figure

2 top, curve a) monoelectronic peaks at-0.31 and-0.57 V vs
SCE that can be assigned to the first reduction of the alongside
BPY2+ unit and the first reduction of the inside DAP2+ unit. After
addition of Me(CH2)5NH2, the two reduction peaks are displaced
toward more negative potentials by 60 and 20 mV, respectively
(Figure 2 top, curve b). The value of the first potential is consistent
with the reduction of an inside BPY2+ unit, as observed in the
previously studied8b symmetrical catenane where the BPP34C10
macrocycle is interlocked with cyclophane containing two BPY2+

units. The second peak can be assigned to the first reduction of
the DAP2+ unit engaged with amine. The latter assignment is
supported by experiments carried out on the symmetrical catenane
14+ containing only DAP2+ units. The differential pulse voltam-
mogram of this compound (Figure 2 bottom, curve a) shows two
peaks at-0.37 and-0.52 V vs SCE that can be assigned to the
first reduction of the alongside and inside DAP2+ unit, respec-
tively. After addition of Me(CH2)5NH2, only one peak is observed
at -0.55 V vs SCE (Figure 2 bottom, curve b). The area of this
peak is almost equal to the sum of the area of the two peaks
observed before the addition of amine. This result indicates that
the DAP2+ unit engaged with amine and the DAP2+ unit located
in the inside position are reduced at almost the same potential. It
follows that, after the addition of Me(CH2)5NH2 to 24+, the DAP2+

unit engages itself with the amine, while the BPY2+ unit locates
itself inside the BPP34C10 macrocycle.

The amine-driven isomerization (Figure 1) of2A4+ to 2B4+

can be reversed quantitatively by addition of CF3SO3H in a
stoichiometric amount with respect to the previously added amine.
Protonation of the amine disrupts the adduct with DAP2+, thereby

restoring the interactions between the electron-donating hydro-
quinone rings of the BPP34C10 macrocycle and the electron-
accepting DAP2+ unit of the cyclophane. As a consequence,
another circumrotation of the tetracationic cyclophane occurs,
giving back the original translational isomer2A4+ in which the
DAP2+ unit occupies the inside position. This outcome is
demonstrated by the full recovery of the original absorption
spectrum and by the fact that the differential pulse voltammogram
of 24+, recorded after acid addition (Figure 2 top, curve c), is
identical to that obtained before the addition of amine (Figure 2
top, curve a). The full reversibility of the interaction of DAP2+

with the amine is confirmed by the fact that, even in the case of
14+, the initial and final spectra and voltammetric patterns (Figure
2 bottom, curves a and c) are identical.

It should be noted that the two stable states of the24+ system
are characterized not only by different electrochemical properties
but also by different colors. In principle, both outputs can be useful
to process information at the molecular level.10
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Figure 2. Differential pulse voltammetry reduction pattern (MeCN, 5.0
× 10-4 M, 298 K, scan rate 20 mV s-1, pulse height 75 mV) of14+

(bottom) and24+ (top). Curves a: starting solutions. Curves b: after
addition of 10 equiv of Me(CH2)5NH2. Curves c: after subsequent addition
of 10 equiv of CF3SO3H.
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